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Abstract

This paper introduces higher-order earnings risk consistent with recent empirical
findings into a benchmark heterogeneous-agent macro model to examine its implica-
tion for the distribution of wealth. I find that higher-order earnings dynamics induce
higher earnings inequality driven primarily by persistent earnings losses at the bottom.
Poor households respond by strongly cutting consumption leading to more consump-
tion and less wealth inequality which reinforces the known issue of generating the
empirically observed wealth dispersion in this class of models. In addition to lower
overall consumption, the higher-order earnings moments, particularly excess kurto-
sis, are passed through to consumption dynamics of the poor. Both effects combined
mean that those households are willing to pay up to 1.7% of permanent consumption
to avoid higher-order earnings risk. Moreover, the latter effect induces consumption
dynamics of the poor to be predominantly driven by idiosyncratic earnings changes
which significantly reduces the correlation between their consumption and aggregate
output. Since wealthier households are not affected strongly the implications for the
aggregate dynamics of the economy are negligible. Methodologically, I develop a new
General Polynomial Chaos Expansion approach to solve for the aggregate dynamics of
this class of models, and contrast its efficiency with previous methods.
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1 Introduction

The aim of this paper is to explore the long and short-term dynamics of the wealth distri-
bution in the presence of higher-order earnings risk. A growing body of recent empirical
studies using administrative and survey panel data on individual earnings finds that earn-
ings dynamics are richer than usually assumed and modeled in quantitative macroeconomic
models. Specifically, these studies document that the distribution of shocks to individual
earnings exhibits sizable left-skewness and substantial excess kurtosis. This is in contrast to
most standard approaches of capturing individual earnings risk. The most commonly used
example is the canonical linear transitory plus persistence process with a Gaussian distri-
bution for both idiosyncratic shocks which can neither capture any higher-order moments
in the distribution of shocks to individual earnings nor any dependence of persistence or
moments on the earnings history.

Earnings dynamics, coupled with the net value of asset holdings, play a central role in
determining consumption responses to earnings risk and shocks over the life- and business
cycle. Individuals save precautionarily when facing a high degree of earnings risk in order to
at least partially insure against potential future changes in earnings and they respond to the
realization of an unexpected change in earnings by altering consumption behavior. For both,
the precautionary savings motive as well as the consumption response to shocks, the size and
persistence of earnings changes matters in determining how much consumption and saving
behavior needs to adjust to ensure a certain standard of living today and in the future. In
line with that, several recent studies, among others Busch and Ludwig (2020) and De Nardi
et al. (2018), show that the existence of higher-order moments in the distribution of earnings
changes has important implications for consumption and saving choices. Based on these
findings, I explore how the presence of higher-order earnings risk affects different parts of
the cross-sectional household distribution and what the resulting equilibrium implications for
long and short-run wealth inequality are. I then evaluate the implications of these findings for
the ability of standard heterogeneous-agent models to match the observed degree of wealth
inequality.

The main contribution of this paper is two-fold. First, I evaluate the role of higher-order
earnings risk for consumption, earnings and wealth in the cross-section and over the busi-
ness cycle. In order to do so I use an incomplete markets real business cycle model in which
households face aggregate and idiosyncratic income risk, and accumulate wealth to self-insure
against shocks to their earnings. To understand the impact of higher-order earnings risk I
compare two economies, a canonical economy and a higher-order economy, which only dif-
fer in their earnings dynamics. Log-earnings are in both economies the sum of a standard
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Gaussian transitory shock and a persistent component. In the canonical economy the persis-
tent component has regular normal innovations and, thus, the earnings distribution does not
capture any higher-order moments. In the higher-order economy the persistent component
is instead calibrated to match the unconditional earnings distributions from recent empirical
studies, in particular Guvenen et al. (2014). The second contribution is methodological. I
use a new global solution method to solve for the aggregate dynamics of heterogeneous-agent
macro models. While the literature on solution methods for heterogeneous-agent macro mod-
els is rapidly growing much of the recent progress pertains to the development of perturbation
methods (Auclert et al. (2021), Winberry (2018)) and less to global solution methods such
as Fernández-Villaverde et al. (2020) and Schaab (2021).

First, I find that earnings inequality increases over the long run in the presence of higher-
order moments. Induced by more severe negative shocks, earnings of the bottom quintiles
of the earnings distribution decrease relative to the average and top earners. Moreover,
matching moments of the 1 and 5-year earnings growth rate distributions induces shocks
to earnings to become more persistent. Income and wealth poor households respond to
lower earnings and less upside potential by reducing consumption and increasing savings. In
contrast, wealthy households behave as permanent income consumers and therefore barely
respond to changes to higher-order moments of shocks to their earnings. Since consumption
and wealth are strongly correlated with earnings, the rise in earnings inequality is passed
through to larger consumption inequality and lower wealth inequality, the wealth Gini falls
from 0.71 to 0.68. To put this into perspective, in order to match the same wealth Gini of
0.71 as in the canonical economy the higher-order economy requires discount heterogeneity
to increase by 20%. The mild looking changes in the cross-section mask strong consumption
responses by the poor. In particular, consumption as a share of cash at hand increases
by roughly 13 percentage points for the bottom quintile of the wealth distribution. Thus,
the presence of higher-order earnings risk increases the importance of wealth and, thus,
precautionary savings as an insurance tool for the poor. This reinforces the known difficulty
of standard heterogeneous-agent models to match the empirically observed dispersion of
wealth when accounting for higher-order earnings risk. Instead these findings put more
emphasis on alternative sources of wealth inequality such as heterogeneity in asset returns
which has recently received much attention. 1

Second, higher-order earnings risk changes the dynamics of the wealth distribution over
the business cycle only for the bottom wealth quintiles, leaving the time series of economic

1For example, Fagereng et al. (2020) and Bach et al. (2020) find substantial heterogeneity in returns to
wealth, Hubmer et al. (2021) argue in a large-scale heterogeneous-agent model that asset return heterogeneity
is key to matching the time series of wealth inequality.
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aggregates such as capital and output mostly unchanged. As poor households increase
savings to compensate worse and more persistent shocks to their earnings their capital income
increases. Moreover, the higher-order moments of earnings, particularly excess kurtosis, are
partially passed through to consumption and wealth holdings of the bottom wealth quintile.
Both effects reduce the correlation between consumption of the wealth poor and aggregate
output substantially, from 0.77 in the canonical economy to 0.19 in the higher-order economy.
Lastly, welfare costs of higher-order earnings risk are concentrated at impatient households
at the bottom of the wealth distribution who would pay 1.7% of permanent consumption to
remain in the canonical economy.

Methodological Contribution. I use General Polynomial Chaos Expansion (GPCE) to
solve for the aggregate dynamics of the model. I build on Proehl (2017) and develop a form
of GPCE that is suitable as a solution method for heterogeneous-agent macro models and
show that it generates a law of motion which accurately forecasts aggregate prices in the
presented model. As an extension and outlook I solve a model with time-varying earnings
risk and show that the method also performs well in that context.
GPCE is a global projection method that expands the cross-sectional household distribution
µt in terms of a series of orthogonal polynomials Ψi and thereby approximates the distribution
with time-varying coefficients αi,t.

µt(st) =
n∑

i=1

αt,iΨi(ν) (1.1)

where st is a vector of individual state variables and ν is a base random variable based on
which the polynomials are generated. GPCE gains its efficiency through a smart choice of
the base random variable, in particular a base random variable that is distributed similar
to the cross-sectional household distribution. This allows GPCE to achieve a high degree of
accuracy with a low dimensional approximation and thereby overcome the curse of dimen-
sionality. I make two contributions with respect to making GPCE suitable in the first place
and also efficient for heterogeneous-agent macro models:

1. One underlying assumptions when using GPCE is that the model parameters are inde-
pendent. When approximating the cross-sectional household distribution this assump-
tion requires the individual state variables to be independent which does not hold in
most economic settings and, particularly in heterogeneous-agent models, is in stark
contrast with the empirical motivation for the models. I develop a GPCE method that
allows for dependence between the individual state variables and thereby makes GPCE
suitable to solving heterogeneous-agent models.
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2. I show that a short outer iteration scheme that updates the base random variable such
that it is similarly distributed as the ergodic household distribution leads to reduced
and less biased forecast errors for a given number of aggregate state variables. More-
over, I implement a version of the method that projects on different bases depending
on whether the economy is in a recessions or an expansions. This is of particular
importance when applying GPCE to economies which at times move far away from
the ergodic distribution since it allows to choose the appropriate base distribution and
therefore polynomials to project on for different regions of the aggregate state space.

The remainder of the paper is structured as follows. The next section places this paper in
the literature. Section 3 describes the quantitative model used to analyze the implications
of higher-order earnings risk. In section 4 I present the global solution method as well as my
contributions in detail. Sections 5 and 6 calibrate the model and present the economic results.
Section 7 evaluates the accuracy of the computational method in contrast to previously used
ones and its ability to accurately solve models which exhibit stronger aggregate non-linearities
than the economy analyzed here. Section 9 provides an outlook for this project, section 10
concludes.
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2 Related Literature

This paper is related to several branches of the literature. First and foremast, it relates
to the long standing literature studying theories of wealth inequality starting with Bewley
(1977), mrohorolu (1989), Huggett (1993), and Aiyagari (1994). The core of the Hugget-
Bewely-Aiyagari (BHA) economy builds on idiosyncratic uninsurable shocks to households’
earnings. Households have to accumulate non-state-contingent assets to smooth consump-
tion. The shocks endogenously generate ex-post dispersion in wealth as households expe-
rience different shocks over time and, thus, have different ability to accumulate wealth. In
the basic model wealth inequality is completely determined by the exogenous specification of
the earnings process, however, properly calibrated earnings processes fall short of generating
the dispersion of wealth observed in the data. An extensive literature builds on the core
model and introduces additional sources of wealth inequality such as entrepreneurial ability
(Cagetti and De Nardi (2006), Quadrini (2000)) or more recently heterogeneity in returns
to wealth (Hubmer et al., 2021). Starting with Krusell and Smith (1998) a large literature
has also explored the dynamics of earnings and wealth inequality in the presence of business
cycle fluctuations which affect households across the wealth distribution differently. I con-
tribute to this literature by revisiting the role of earnings dynamics for wealth dispersion, in
particular focusing on the role of higher-order earnings risk.

This paper is further related to the growing literature studying the implications of higher-
order earnings dynamics for consumption and wealth. In particular, a more recent empirical
body of papers documents that, in contrast to previous work, individual earnings shocks
exhibit sizable higher-order moments in form of negative skewness and excess kurtosis. In-
corporating these higher-order dynamics in richer earnings processes has been shown to
matter for a variety of economic questions. Golosov et al. (2016) show that it has impor-
tant implications for optimal redistribution and insurance. In a standard Aiyagari economy
Civale et al. (2017) evaluate the implications of higher-order earnings risk for the aggregate
capital stock. De Nardi et al. (2018) and Busch and Ludwig (2020) both analyze the impli-
cations for consumption-savings decisions over the life-cycle in partial equilibrium life-cycle
models. They find that a richer process for earnings increases consumption insurance and
moves insurance against persistent shocks closer to the data. Importantly, Busch and Lud-
wig note that the increased average consumption insurance masks the fact that insurance
against negative shocks nevertheless falls. The intuition is that negative skewness coupled
with excess kurtosis induces negative shocks to be larger in size and the rise in precaution-
ary savings is not sufficient to fully offset those. I contribute to this literature by analyzing
the heterogeneous role of higher-order earnings risk for consumption and wealth across the
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wealth distribution. However, in contrast to much of the existing literature (De Nardi et al.,
2018; Busch and Ludwig, 2020) I allow for general equilibrium effects and business cycle
fluctuations. This is important as wealth inequality is not only determined by individual
household responses to earnings dynamics but also through their interactions in capital and
labor markets which are themselves subject to business cycle fluctuations.

My work is further related to the extensive literature on solution methods for heterogeneous-
agent models, and in particular global solution methods 2. In their seminal contribution
Krusell and Smith (1998) develop a global solution method that proposes a parametric law
of motion for the aggregate capital stock and is still widely used. More recently, there has
been a series of papers on perturbation methods using similar finite-dimensional distribu-
tion approximations as I do (Boppart et al. (2018), Winberry (2018)). I build on and my
contribution is most closely related to Proehl (2017) who first introduced General Polyno-
mial Chaos Expansion (GPCE) to an economic setting and whose paper provides important
insights into how to implement GPCE in practice. Much of her focus is on the theoretical
foundations of the method, proving convergence to the rational expectation equilibrium in
a standard Krusell-Smith economy. My paper is also closely related to Schaab (2021) who
developes a similar global solution method. While he generates the basis functions to project
on in a different way, he also focuses on how to choose the basis functions optimally in order
to generate a low-order efficient and non-parametric approximation for the law of motion.
I contribute to that literature by developing an efficient version of GPCE that, crucially,
allows for individual state variables to be dependent, thereby making it a suitable solution
method for heterogeneous-agent models.

2e.g. Den Haan (1996), Den Haan (1997), Reiter (2010), Maliar et al. (2010), Proehl (2017), Fernández-
Villaverde et al. (2020), Schaab (2021)
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3 Model

The model builds on Krusell and Smith (1998), thus, it is a general equilibrium model with
household heterogeneity and aggregate risk. It differs from Krusell and Smith (1998) at
the microeconomic level in two important ways: First, households experience idiosyncratic
shocks to their earnings rather than to their employment status. This allows the model to
match the estimated earnings dynamics from the data and to obtain more realistic cross-
sectional earnings and wealth distributions. Second, households differ in their permanent
discount factors which is a common and known modification to match the cross-sectional
dispersion in wealth that we observe in the data. Generating a realistic degree of wealth
dispersion is necessary to understanding the implication of higher-order earnings risk as
households across the wealth distribution respond differently to earnings risk. Moreover,
calibrating the dispersion of discount factors to match cross-sectional moments of the wealth
distribution gives rise to an intuitive measure of how much higher-order earnings risk affects
wealth dispersion, that is, the change in discount factor dispersion required to match the
same moments.

3.1 Technology

A representative firm maximizes profits by renting capital Kt and labor Lt from households
to produce a non-storable consumption good Yt. The firm takes factor prices for capital and
labor, Rt and Wt, as given and operates a standard Cobb-Douglas technology subject to
aggregate productivity shocks zt. The static maximization problem is given by

max
Kt,Lt

Yt −RtKt −WtLt.

where

Y = ztK
α
t L

1−α
t (3.1)

and α denotes the capital share of output. The mean-reverting productivity shock zt is the
source of aggregate uncertainty in this model and follows an AR(1) process given by

log(zt) = (1− ρz)µz + ρzlog(zt−1) + ϵzt ,

with E[zt] = 1. Input markets are competitive, thus, factor prices Rt and Wt are equal to
their marginal products. Capital used in production depreciates at rate δ.
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3.2 Households

The economy is populated by a continuum of households of unit mass. Households survive
from each period to the next with constant probability θ as in Blanchard (1985). Carroll
et al. (2015) show that this ensures the existence of an ergodic wealth distribution. Each
period a mass 1 − θ of new households is born with zero initial wealth, thus, leaving the
overall population size unchanged.

3.2.1 Preferences

Households maximize expected discounted utility from consumption with standard time-
separable preferences, that is, period utility u(c) is continuous, strictly increasing and con-
cave. Households differ in wealth, labor productivity and discount factors. Discount factor
heterogeneity as a tool to generate a degree of wealth inequality similar to the data was
first introduced by Krusell and Smith (1998) who postulated that households face stochastic
shocks to their discount factors. Instead, I follow Carroll et al. (2017) and assume households
have different but permanent discount factors. This can be interpreted as capturing a vari-
ety of channels of heterogeneity such as differences in risk preferences, age or expectations
that matter for consumption-savings decisions, and thereby for the resulting distribution of
wealth. Discount factors are distributed uniformly on the intervall [β − ∆, β + ∆] which I
discretize with three possible values. Thus, there are two parameters, the mean discount
factor β and the dispersion ∆, that need to be chosen in the calibration.

3.2.2 Household Problem

Each period households choose how much to consume and save while supplying labor inelas-
tically to the firm. Households are subject to uninsurable idiosyncratic earnings risk as well
as aggregate uncertainty, they can save via risky capital and have otherwise only access to
perfect annuity markets. Assets of the deceased are distributed equally among the surviving
population and the newborn households are born with zero assets.
Let at and yt denote current asset holdings and labor productivity, respectively, and βi the
permanent discount factor of households of type i. Further, let Zt be a vector of aggregate
state variables consisting of aggregate productivity zt and the cross-sectional household dis-
tribution µt(βi, at, yt) which households need to know in order to predict future prices. Then
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the recursive household problem is given by

V (βi, at, yt, Zt) = max
ct,at+1

u(ct) + θβiEt [V (βi, at+1, yt+1, Zt+1)] (3.2)

subject to budget constraint, borrowing constraint and aggregate law of motion

ct + at+1 ≤ at(1 + R(Zt)− δ) + ytW (Zt)

at+1 ≥ 0

µt+1 = A(Zt, zt+1)

Household utility is given by

u(ct) =
c1−σ
t

1− σ
(3.3)

where σ as usual quantifies risk aversion and the inverse of the intertemporal elasticity of
substitution.

3.2.3 An Earnings Process with Higher-Order Moments

The focus of this project is the effect of higher-order idiosyncratic earnings risk on household
behavior. Labor productivity yt is the sum of a transitory and a persistent component

yt = exp (pt + ϵt) , ϵt ∼
iid

N (0, σ2
ϵ ) (3.4)

The persistent component pt follows an AR(1) process given by

pt = ρpt−1 + ηt, ηt ∼
iid

F (3.5)

The distribution of innovations to persistent earnings F is calibrated to match recent empir-
ical findings from Guvenen et al. (2015) and exhibits negative skewness and excess kurtosis.
Let Π(yt+1|yt) denote transition probabilities and p(y) the invariant distribution of overall
earnings that come out of the calibration. I propose a simple way to discretizing the persis-
tent component when trying to match higher-order moments of earnings building on Civale
et al. (2017) which, in contrast to existing methods, does not require a simulation step 3.

3See appendix B for a detailed description of the discretization method.
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3.3 Recursive Competitive Equilibrium

A recursive competitive equilibrium consists of policy and value functions for households in all
individual and aggregate states, ct(βi, at, yt, Zt), at+1(βi, at, yt, Zt), V (βi, at, yt, Zt), functions
for aggregate prices, R(Zt) and W (Zt), and an aggregate law of motion for the cross-sectional
household distribution A(Zt, zt+1) such that

1. Given pricing functions and the aggregate law of motion, R(Zt), W (Zt) and A(Zt, zt+1),
V (βi, at, yt, Zt) solves the household problem described in (3.2), and ct(βi, at, yt, Zt),
at+1(βi, at, yt, Zt) are the corresponding decision rules.

2. Factor prices are equal to their marginal products and given by

R(Zt) = ztα

(
Kt(Zt)

Lt

)α−1

W (Zt) = zt(1− α)

(
Kt(Zt)

Lt

)α

3. Capital and Labor markets clear

Kt(Zt) =

ˆ
at dµ(βi, at, yt)

Lt = L̄ =
∑
y

yp(y)

4. The aggregate law of motion A used by households to forecast the evolution of the
cross-sectional distribution is consistent with the realized law of motion induced by
household behavior and the exogenous processes for aggregate and idiosyncratic risk.

11



4 The Global Solution Method

This section discusses the methodological contribution and presents the global solution
method used to solve for the aggregate dynamics of the economy. Reading this section
is not required in order to follow the economic results.
It is well known that heterogeneous-agent models with aggregate non-linearities are difficult
to solve. The reason is that households base current actions on forecasts of future prices
and in any rational expectations equilibrium those forecasts have to be consistent with how
the economy actually evolves, that is, with the future prices that materialize. If the optimal
policy function for savings features a constant propensity to save out of current assets and
income, the evolution of aggregate capital can be described by an average savings function
of a representative household and the current capital stocks becomes a sufficient statistic
for future prices. However, if the propensity to save out of current assets and income is not
constant across the individual state space, forecasting the aggregate capital stock requires
forecasting the evolution of the cross-sectional household distribution. The distribution
then becomes an aggregate state variable which makes the aggregate state space infinite-
dimensional. The goal of any solution method is to accurately approximate the aggregate
state space in finitely many dimensions, in fact in as few as possible.

4.1 Polynomial Chaos Expansion

General Polynomial Chaos Expansion (GPCE) is a projection method that represents some
random variables of interest, such as the cross-sectional household distribution, as a function
of a basic random variable with some specified distribution. The function is an infinite
series of orthogonal polynomials which maps the basic random variable into the space of
square-integrable random variables. Thus, the basic idea is to represent the cross-sectional
household distribution as a random variable by approximating it as a series of polynomials
which themselves are random variables.

I build on Proehl (2017) who first used GPCE to solve a standard Krusell-Smith economy.
Their focus was largely on the theoretical underpinnings, among other things proving conver-
gence to the rational expectations equilibrium. The central task for any projection method
is to choose the projection base, here the set of polynomials. The advantage of polynomial
chaos expansion over other projection methods is that when the basic random variable is
chosen such that it is similar to cross-sectional household distributions to be approximated
the order of polynomials required to obtain a good approximation of the household distribu-
tion is significantly reduced. Moreover, given a base random variable the set of polynomials
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can be generated with standard methods. However, when approximating multivariate dis-
tributions GPCE builds on the assumption that the variables that make up the multivariate
distribution are independent. When applied to economic models, this assumption requires
the individual state variables to be independent. In most economic settings individual state
variables are not independent, and in heterogeneous-agent models such as the one presented
here generating a realistic joint distribution of income and wealth is instead a central moti-
vation. The standard GPCE method, therefore, cannot accurately approximate the law of
motion in these models because the implied independence assumption causes the distribution
of the projection base to miss important features of the cross-sectional household distribution
to be approximated. To make GPCE suitable for this class of models, I develop an approach
to account for dependent base variables and show that it generates an accurate law of motion.

Formally, let ν ∼ F be some basic random variable and Ψi a series of orthogonal polyno-
mials which map ν into the space of square-integrable random variables. Then any square-
integrable random variable µt can be written as

µt =
∞∑
i=0

αt,iΨi(ν) (4.1)

where αt,i is a series of scalar coefficients. Here µt is a cross-sectional household distribu-
tion which is fully characterized by the specific series of coefficients {αt,i}ni=1. In practice,
the above polynomial expansion must be truncated for the aggregate state space to become
finite-dimensional and to make the household problem tractable, and thereby computation-
ally feasible. Let the order of truncation be denoted by n, thus, one replaces the true
household distribution with an n-th order GPCE approximation. Then the evolution of the
approximate household distribution µt,n is fully characterized by the evolution of coefficients
{αt,i}ni=1. The number of dimensions in the aggregate state space required to approximate
the cross-sectional distribution reduces to n and the household problem becomes tractable.
Naturally, truncating the infinite series in equation 4.1 introduces an approximation error.
The quality of the solution method is determined by its ability to approximate the distribu-
tions of interest sufficiently well while keeping the order of truncation n low and, thus, the
aggregate state space small.

4.1.1 Choice of the Base Random Variable

The first task is to choose the distribution of the base random variable which the polynomials
take as an argument. It is crucial that this base distribution closely mimics the cross-sectional
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household distributions that is approximated in the dynamic model. This will allow the
truncation order to be low while still achieving a high degree of accuracy. I propose an outer
iteration scheme that chooses and adjusts the base distribution in the following way:

1. Begin with an inital base distribution. Here the cross-sectional household distribution
from the steady state model without aggregate risk is usually a good choice. First,
the steady state distribution is easy to obtain and often one solves for the steady state
anyway in order to obtain an initial guess for the policy functions. Second, the shape
of the ergodic distribution from the dynamic model is often similar to the shape of the
steady state distribution.

2. Solve the model with the polynomials based on the initial base distribution and simu-
late the economy. Compute forecast errors and the ergodic distribution.

3. If forecast errors are too large, update the base distribution by using the ergodic
distribution from the simulation. In practice it is useful to dampen the adjustment of
the base distribution by using a convex combination of the ergodic distribution and
previous base distribution. This is repeated until the forecast errors of the law of
motion are sufficiently small or the ergodic and base distributions are equivalent, thus,
making further updates redundant. If that is the case while the forecast errors are still
too large the order of truncation needs to be increased and the scheme repeated.

The overall shape of the ergodic distribution is usually not sensitive to small forecast errors
in the law of motion, thus, only a small number of iterations is necessary until the base and
ergodic distribution converge, for example I used three iterations.

The implementation as described above may not work well in economic settings in which
parts of the aggregate state space exhibit strong non-linearities. In that case the cross-
sectional household distribution can move far away from the ergodic distribution in those
parts of the aggregate state space. This is often the case in models with financial accelerators
such as Brunnermeier and Sannikov (2014) or Fernández-Villaverde et al. (2020). In that
case, one can project on different base distributions and, thus, different sets of polynomials
depending on where in the aggregate state space the economy is. For example, in models with
financial accelerators the level of leverage of the financial sector could determine the current
base distribution. In section 8 I solve an economy with cyclical earnings risk by projecting
on different bases in recessions and expansions, thus, the current base distribution depends
on the aggregate level of productivity zt. The method provides an accurate law of motion in
that setting as well.
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4.1.2 Polynomials with Standard GPCE

Given a choice for the base random variable ν one needs to generate the set of orthogo-
nal polynomials {Ψi(ν)}ni=1 on which to project. When approximating multivariate distri-
butions, such as the cross-sectional household distribution over (β, y, a) in the presented
model, the standard GPCE method prescribes to choose an independent basic random vari-
able (ν1, ν2, ν3) = (νβ, νy, νa) for each dimension. For each base random variable νj the
respective univariate set of polynomials {Ψj,i(νj)}ni=1 is generated separately. The polyno-
mials can be generated using the three-term recurrence relation (see e.g. Gautschi (1982) or
Zheng et al. (2015)) 4. The multivariate set of orthogonal polynomials {Ψi(ν)}ni=1 is then a
tensor product of the univariate polynomials given by

µt =
∞∑
i=1

αt,iΨi(ν)

=
∞∑
i=1

αt,iΨi(νβ, νy, νk)

=
∞∑
i=1

αt,i

i∑
i1,i2,i3=1

Ψ1,i(νβ) ·Ψ2,i(νy) ·Ψ3,i(νa) 1{i1 + i2 + i3 = i} (4.2)

The corresponding probability density function f(ν) of the base distribution ν is also given by
the tensor product of the univariate pdf’s, that is, the joint distribution of the base random
variable ν = (νβ, νy, νa) is generated by multiplying the marginal pdf’s. However, in the pre-
sented model the individual state variables (β, y, a) are not independent but instead exhibit
strong correlation. Generating the set of polynomials under the independence assumption as
described above generates a base distribution with a set of corresponding polynomials that
does not closely mimic the cross-sectional household distribution to be approximated. This
leads to large approximating errors in the law of motion if accounting for the correlation
between the individual state variables is relevant for the evolution of prices. For example,
this is the case if asset poor agents behave significantly different depending on whether their
earnings are low or high or depending on whether they are impatient or patient. As shown
and discussed in section 7 this applies to my model.

4See appendix A for details on generating the polynomials with the the three-term recurrence relation
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4.1.3 A Dependent GPCE Method

To allow for dependence among the base random variables, I instead propose a different
way of generating the polynomials and using GPCE. Instead of approximating the joint,
unconditional cross-sectional household distribution with a joint base random variable and
joint set of polynomials as described in the previous section, I approximate the evolution of
the conditional asset distribution µt(a|β, y), thus for each (β, y) group, separately. I choose
a univariate base random variable ν(a|β, y) and generate a set of univariate polynomials
{Ψi(ν(a|β, y))}ni=1 for each (β, y). As a result, I effectively apply GPCE to each (β, y) asset
distribution separately and, thus, the evolution of each (β, y) asset distribution is described
by a set of coefficients {αt,i(β, y)}ni=1. This naturally allows the different base random variable
to depend on the discount factor β as well as income y, and thereby allows individual state
variables to be dependent. Solving for a law of motion for all {αt,i(β, y)}ni=1, however, would
add n aggregate state variables for each (β, y) group. In order to overcome the resulting curse
of dimensionality I solve for the law of motion only at specific combinations of coefficients
in the aggregate state space.

I illustrate this by looking at the first-order coefficients αt,1(β, y). The first-order polyno-
mials are by default equal to 1, Ψi(ν) = 1 and higher-order order polynomials are constructed
with zero-mean thereby making the first-order coefficients αt,1 equal to the mean of the dis-
tribution at time t. First, I discretize the state space of coefficients αt,1(β, y) separately for
each (β, y) base using the same number of grid points for each one. This yields the first-order
coefficients to have different grids across (β, y) groups. Therefore, it allows exactly defining
the possible average asset holdings for each (β, y) conditional asset distribution at which the
law of motion is solved for. This is not possible with the standard GPCE approach.
In order to overcome the curse of dimensionality, I only solve for points in the aggregate
state space where all αt,1(β, y) have the same index in their respective grids. For example,
if each grid for the first-order coefficients αt,1(β, y) has a total of two grid points I only solve
for the law of motion at points in the aggregate state space where all αt,1(β, y) are either low
or high. Economically, I thereby assume that the average asset holdings of (β, y) groups are
positively correlated. For the sake of forecasting prices it is therefore sufficient to approxi-
mate the law of motion at points in the aggregate state space where average asset holdings
for all conditional asset distributions µt(a|β, y) are simultaneously low or high. Importantly,
this assumption does not imply that average asset holdings by (β, y) groups simultaneously
increase and decrease by the same amount or even factor but rather that the sign of changes
in the average asset holdings is the same over time. The aggregate law of motion then takes
as input not the first-order coefficient for all (β, y) asset distributions but instead I choose
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the weighted average across all groups resulting in an unconditional coefficient

αt,1 =
∑
β,y

αt,1(β, y)p(β, y) (4.3)

The weights p(β, y) are given by the exogenous, invariant mass of agents with individual
state (β, y). As a result, the first-order coefficient αt,1 will be equal to the aggregate capital
in the economy as with standard GPCE despite generating each (β, y) asset distribution
with their own separate set of polynomials and coefficients.
I then apply the same assumption when generating higher-order polynomials and discretizing
the state space of the corresponding coefficients. As a result, the total number of aggregate
grid points used to approximate the cross-sectional distribution is again equal to the order
of truncation n.

4.1.4 Simultaneously Solving for the Transition and Policy Functions

I will briefly outline the specific steps taken when solving for the law of motion for the
unconditional coefficients f({αt,i}ni=1) = {αt+1,i}ni=1.
The traditional way of finding a law of motion for the cross-sectional household distribution
that is consistent with household behavior is to start with a parametric guess for the law
of motion and then solve and simulate the model. The guessed law of motion is updated
based on the realized law of motion in the simulation and the model is solved again with
the updated law of motion. It usually requires many rounds of simulation until the guessed
and simulated laws of motion converge. A major advantage of projection methods such as
Dependent GPCE as presented here or the one presented in Schaab (2021) is that they do not
need the simulation step but instead solve for a nonparametric law of motion while solving
for the policy functions.

First, one initializes the algorithm with some guess for the transition function just as one
begins with some initial guess for the policy functions. In this class of models a good initial
guess is usually to assume that the cross-sectional household distribution does not change.
Thus, given a set of coefficients {αt,i}ni=1 in the discretized aggregate state space the initial
guess for the law of motion at that point is given by

f({αt,i}ni=1) = {αt+1,i}ni=1

= {αt,i}ni=1

In a given aggregate state (zt, {α̃t,i}ni=1) the law of motion and current policy functions deter-
mine the possible aggregate and individual states next period and, thus, the right-hand-side
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of the Euler equation. One then solves the Euler equation and updates the current guess
for policy functions in all individual states. The updated policy functions are then used
to update the law of motion in the following way. The current conditional asset distribu-
tions µ̃t(a|β, y) for all (β, y) is given by the polynomial expansion in the current conditional
coefficients

µ̃t(a|β, y) =
n∑

i=1

α̃t,i(β, y)Ψi(ν(a|β, y))

Given the policy function for asset holdings at+1(zt, {α̃t,i}ni=1, β, y, a), the conditional asset
holdings next period µ̃t+1(ā|β̄, ȳ) at some specific point (ā, β̄, ȳ) in the individual state space
evolves according to

µ̃t+1(ā|β̄, ȳ) =
ˆ
β,y,a

p(a|β, y)1{at+1(zt, {α̃t,i}ni=1, β, y, µ̃t(a|β, y)) = ā}p(β̄)p(ȳ|y)d(β, y, a)

where p(β̄) is the exogenous, invariant mass of agents with β = β̄, p(ȳ|y) is the exogenously
determined transition probability for earnings, and p(a|β, y) is the conditional base pdf of
group (β, y). One then projects the realized cross-sectional household distribution µ̃t+1 onto
each polynomial in order to obtain the realized conditional coefficients next period.

αt+1,i(β, y) =
⟨µ̃t+1,Ψi⟩
⟨Ψi,Ψi⟩

=
1

⟨Ψi,Ψi⟩

ˆ
β,y,a

µ̃t+1(a|β, y)Ψi(a|β, y)dF (a|β, y) ∀i

where dF (a|β, y) denotes the conditional density of the base random variable for group (β, y).
The transition function is then updated with the new unconditional coefficients αt+1,i which
follow from 4.3. This is repeated until policy functions and transition function converge.
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5 Taking the Canonical Economy to the Data

The model is calibrated to match US data at an annual frequency. I calibrate the model
with the canonical specification and then use the same set of parameters in the economy
with higher-order earnings risk. The distribution of discount factors is calibrated internally,
the remaining parameters are calibrated externally.

Aggregate Risk and Technology. As standard in the literature, I model aggregate
shocks as a two-state AR(1) process where the two states correspond to recessions and
expansions z ∈ {zr, ze}. Following Krusell and Smith (1998) and much of the literature
I set the standard deviation of aggregate productivity to σz = 0.01 to roughly match the
magnitude of business cycle fluctuations in the US. This results in productivities in recessions
and expansions to be zr = 0.99 and ze = 1.01, respectively. I follow Busch and Ludwig (2020)
in their classification of recessions and expansions which gives rise to the following transition
matrix for aggregate productivity

π(zt+1|zt) =

(
0.388 0.612

0.231 0.769

)
(5.1)

and corresponding invariant distribution πz = (0.274, 0.726). The capital share is set to
α = 0.36 and capital depreciates at rate δ = 0.08. Average income ȳ in the economy is
normalized such that average output over the business cycle is equal to 1.

Preferences and Discount Factor Distribution. Households are assumed to have log-
arithmic utility. I calibrate the parameters of the discount factor distribution, meaning the
average discount factor β and the dispersion ∆, to match an average capital to output ratio
of 3 and a Gini coefficient for wealth of 0.71. I choose a wealth Gini at the lower end of
estimates for the US to prevent the degree of discount factor heterogeneity from becoming
too large as it is the only source of wealth inequality in this model beyond earnings inequal-
ity. I set the survival probability ϕ to 0.9833 such that the average life-time of an agent is
60. Table 1 provides a summary of the model parameters in the economy with the canonical
earnings process.
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Parameter Value Source/Target
Preferences

σ Relative Risk Aversion 1 standard
β̄ Discount Factor 0.9559 K/Y=3
∆β Discount Factor Dispersion 0.0203 Wealth Gini=0.71
ϕ Survival Probability 0.9833 Avg life-time of 60

Technology and Aggregate Uncertainty
α Capital Share 0.36 standard
δ Depreciation 0.08 standard
σz Standard Deviation of TFP 0.01 standard
ȳ Average Income E(Y)=1

Table 1: Benchmark Calibration

5.1 The Canonical Earnings Process

The earnings process in the canonical economy does not exhibit any higher-order order mo-
ments, the transitory as well as the persistent innovations are Gaussian. Table 2 provides the
chosen parameters. There are three parameters to calibrate, the variances of both shocks
and the persistence of the persistent component. The objective of this paper is to ana-
lyze the impact of higher-order earnings risk by comparing its predictions in a standard
heterogeneous-agent model to the canonical earnings process used in much of the literature.
Thus, to make my results comparable to similar papers in the literature I set all parameters
to standard values that are widely used 5.

Parameter Value Description
ρη 0.965 Persistence persistent shocks
σ2
η 0.035 Variance persistent shocks

σ2
ϵ 0.07 Variance transitory shocks

Table 2: Benchmark Earnings Process

5.2 An Earnings Process with Higher-Order Moments

In order to generate higher-order moments in persistent earnings I let the innovations to the
persistent component follow a mixture of normal distributions. The full earnings process is

5For example, Krueger and Ludwig (2016), Busch and Ludwig (2020), Storesletten et al. (2004).
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then given by

yt = exp (pt + ϵt) , ϵt ∼
iid

N (0, σ2
ϵ ) (5.2)

pt = ρpt−1 + ηt, ηt ∼
iid

N (µ1, σ
2
1) with p1

N (µ2, σ
2
2) with 1− p1

(5.3)

I calibrate and discretize the above process with GMM by simultaneously matching a set
of moments of the earnings process as well as a set of statistics of the earnings distribution
(see appendix B for details). The latter is possible because labor is supplied inelastically,
thus, one can compute statistics of the earnings distribution directly from the earnings grid
and stationary earnings distribution. For the earnings process I target estimates of earnings
moments from Guvenen et al. (2015). While some related paper such as De Nardi et al.
(2018) provide discretized processes and transition matrices online there are two advantages
from discretizing myself. First, De Nardi et al. (2018) solve a partial-equilibrium model
which allows them to use a large number of grid points to obtain a better match, too
large to be feasible in my general equilibrium setting with aggregate risk. Second, the
provided earnings process exhibits significantly less earnings inequality than observed in the
data, however, roughly matching the empirically observed earnings distribution is key when
analyzing implications for wealth inequality. Table 3 provides the calibration results for the
moments of the earnings process. Apart from moments for 1 and 5-year earnings growth
rates from Guvenen et al. (2015), I also target the variance of log earnings from the canonical
process to ensure better comparability between the economies.

Targets Discretized process
Variance(x) 0.58 0.59

Variance(∆1x) 0.23 0.19

Skewness(∆1x) −1.35 −1.39

Kurtosis(∆1x) 17.8 15.72

Variance(∆5x) 0.46 0.51

Skewness(∆5x) −1.01 −1.25

Kurtosis(∆5x) 11.55 9.88

Table 3: Unconditional moments of log earnings for higher-order earnings process, targeted
moments from Guvenen et al. (2015)
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6 The Cross-Sectional Household Distribution

I first compare the cross-sectional distributions of income, earnings and wealth across the
two economies. As a benchmark, I also report the observed cross-sectional facts from the
data as estimated by Krueger et al. (2016) and Chang et al. (2019). Matching these cross-
sectional distributions is important in a variety of settings, particularly when moving to
normative questions such as the welfare costs of business cycles in the presence of cyclical,
higher-order earnings risk, and policy design implications. Table 3 provides the ergodic cross-
sectional distributions of wealth, earnings and consumption by their respective quintiles from
simulating the economies.

Wealth Earn Cons
H-O Can Data H-O Can Data H-O Can Data

Bottom 20% 1.6% 1.3% -0.5% 4.2% 5.8% 4.5% 5.7% 6.8% 6.5%
20%-40% 3.6% 3.1% 0.5% 7.5% 9.7% 9.9% 8.2% 12% 11.4%
40%-60% 6.6 % 5.5% 5.1% 16% 15% 15.3% 18% 16% 16.4%
60%-80% 14% 13% 18.7% 27% 24% 22.8% 28% 24% 23.3%
80%-100% 74% 77% 76.2% 45% 46% 47.5% 39% 42% 42.4%
Gini 0.68 0.71 0.71 0.43 0.41 0.42 0.37 0.35 0.36

Table 4: Cross-sectional wealth, earnings and consumption distributions by quintiles for
higher-order (H-O), canonical (Can) and Data.
Data estimates from Krueger et al. (2016) and Chang et al. (2019)

To begin with, the canonical model is able to match the cross-sectional distributions well
while only targeting the wealth Gini in the calibration. However, it requires the discount
factor dispersion to be relatively large at ∆β = 0.0203 as shown in table 1. Specifically the
earnings and consumption distributions are close the data. As for the wealth distribution
the model fits the overall shape, however, has the known issue that the bottom quintiles
accumulate too much wealth. There are several reasons for that. While the earnings process
is calibrated to match earnings dynamics post government transfer it still misses out on
some important parts of the social security net for low-income households which reduce
their precautionary savings motive. For example, in the canonical economy households in
the bottom earnings state earn roughly 8.2% of average earnings, significantly less than what
unemployed households usually receive through unemployment insurance in the US. As a
comparison, the replacement rate of unemployment insurance for an individual who earned
the average wage prior to job loss is 54% according to the OECD. As a result, households at
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the bottom of the wealth distribution exhibit too strong of a precautionary savings motive.
In addition, households cannot borrow in this setting and, thus, the model cannot generate
the negative wealth holdings of the bottom quintile observed in the data.
With the same calibration, the model with higher-order earnings risk matches the three
cross-sectional distributions still fairly well but worse than the canonical model across the
board. The induced earnings distribution is more unequal than in the canonical case and
the data. In particular, the bottom quintiles now receive a smaller share of overall earnings.
Excess kurtosis and negative skewness increase the dispersion of earnings at the bottom
with earnings in the bottom earnings state falling relative to average and top earnings. As
a result, more earnings are shifted from the bottom two quintiles to the top three quintiles.
In addition to those changes in the earnings distribution the higher-order earnings process is
also more persistent than the canonical one. This is mostly induced by matching moments
of 1 and 5-year earnings growth rates. As a result, low-income households not only earn less
but also are less likely to become lucky and climb up the earnings latter. Since consumption
and wealth are both strongly correlated with earnings, the increase in earnings inequality
is partly passed through to consumption and wealth. Low-earnings households respond to
the change in their earnings prospects by increasing savings and reducing consumption. As
a result, consumption of the bottom two quintiles falls while consumption of the top three
quintiles rises, leading to an increase in consumption inequality as measured by the Gini
coefficient. Similarly, wealth dispersion falls as the bottom quintiles increase their savings
which results in a decrease of the wealth Gini from 0.71 to 0.68.

This is relevant for the existing large empirical and quantitative literature that tries to
identify potential mechanisms to generate the degree of observed wealth dispersion. These
findings suggest that the correlation between earnings and wealth dispersion is weakened
by the presence of higher-order risk which in turn increases the importance of alternative
sources of wealth dispersion. In order to further quantify the reduction in wealth dispersion
I recalibrate the higher-order economy to match the wealth Gini. The required dispersion
in discount factors rises by 20% to roughly ∆β = 0.025.

Table 5 reports the earnings distribution by wealth quintiles for the two economies as
well as from the data. In line with the analysis above, the share of earnings at the bottom of
the distribution falls significantly from 13% in the canonical economy to 10% in the higher-
order economy. As a result, the higher-order earnings dynamics help to match the bottom
of the distribution as the canonical economy generates too little earnings dispersion among
the wealth poor.
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Higher-Order Canonical Data
Bottom 20% 10% 13% 9.8%
20%-40% 14% 14% 13%
40%-60% 19% 19% 18%
60%-80% 27% 24% 22%
80%-100% 30% 30% 37%

Table 5: Earnings distribution by wealth quintiles, averaged over all simulation periods.
Data estimates from Krueger et al. (2016) and Chang et al. (2019)

In conclusion, the presence of higher-order earnings risk has quantitatively important
implications for the bottom of the earnings and consumption distribution while the wealth
distribution is only affected mildly. This is mostly due to the fact that the bottom quintiles
of the wealth distribution hold little wealth such that even relatively large changes in their
consumption-savings behavior do not translate strongly into changes of wealth dispersion.

6.1 Consumption Responses across the Distribution

To get a better understanding of the heterogeneity in responses to higher-order earnings
risk that the above described changes in the cross-sectional household distribution imply, a
closer look at consumption-savings decisions across the wealth distribution is useful. Table
6 reports consumption as a fraction of cash at hand by wealth quintiles averaged across the
respective quintile.

Higher-Order Canonical
Bottom 20% 54% 67%
20%-40% 44% 52%
40%-60% 37% 45%
60%-80% 30% 29%
80%-100% 13% 13%

Table 6: Consumption share by wealth quintiles measured as consumption over cash at hand,
averaged over all simulation periods.

The table shows that the mild changes in the cross-sectional distributions mask more
drastic changes in the behavior of wealth-poor households. The bottom three wealth quin-
tiles reduce their consumption share significantly, with the share falling for the bottom
quintile by 13 percentage points. In contrast, the top two wealth quintiles spend roughly the
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same fraction of asset holdings on consumption as in the canonical economy. Wealthy house-
holds behave as permanent income consumers and therefore react little to changes in the
higher-order moments of their earnings dynamics but instead primarily care about expected
earnings. In order to generate negative skewness while keeping the other moments constant,
in particular the variance, additional probability mass has to be moved to high earnings
states making good shocks more likely. As a result, expected earnings increase slightly and
rich households respond to the increase in permanent income by reducing savings slightly.
While the response by the wealthy is very weak it still offsets the increase in savings by the
bottom quintiles. The reason is that the top wealth quintile holds roughly 75% of the total
wealth in the economy. Aggregate capital and, thus, prices are therefore the same in both
economies in equilibrium.

6.2 Time Series Dynamics

The time series dynamics for economic aggregates are very similar in the two models. This
is consistent with the above analysis showing that the presence of higher-order earnings risk
primarily affects the lowest wealth quintiles while wealthier households behave as permanent
income consumers and barely alter their consumption-savings behavior. The lowest wealth
quintile holds only a very small share of aggregate wealth and, as a result, changes in its
consumption-savings behavior are not passed through to aggregate capital, output and prices.
Nevertheless, as consumption behavior of the wealth poor is altered by higher-order earnings
risk so are time series dynamics of their consumption. Table 7 shows by wealth quintile the
correlation between consumption and aggregate output as well as kurtosis of total wealth
held by that quintile.

corr(C,Y) Kurtosis Wealth
H-O Can H-O Can

Bottom 20% 0.19 0.77 6.2 2.4
20%-40% 0.37 0.34 3.5 2.7
40%-60% 0.34 0.42 2.8 3
60%-80% 0.51 0.54 2.5 2.6
80%-100% 0.66 0.61 2.6 2.6

Table 7: Correlation between aggregate consumption of each wealth quintile and aggregate
output as well as kurtosis of total wealth held by each quintile.

Higher savings by the poor increase their ability to smooth consumption and, as a re-
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sult, correlation between aggregate consumption of the bottom wealth quintile and output
drops. In addition, the time series of total wealth held by the bottom wealth quintile ex-
hibits substantial excess kurtosis in the higher-order economy. The reason is that for those
households cash at hand consists primarily of earnings and, therefore, wealth holdings adopt
the higher-order moments of earnings. As a result, variation in consumption of wealth poor
households over time is predominantly driven by large changes to their earnings rather than
business cycle fluctuations in the higher-order economy. This further reduces the correlation
between their consumption and aggregate output compared to the canonical economy.

6.3 Welfare Costs of Higher-Order Earnings Risk

Given the substantial heterogeneity in consumption responses across the wealth distribution
it is natural to quantify the cost of higher-order earnings risk in utility terms. In order
to do so, I ask in which world households prefer to live. In particular, I look at average
expected life-time utility by wealth quintile for each discount factor group and calculate the
consumption equivalent variation (CEV) that a household needs to receive in the canonical
economy in order to be indifferent between staying in the canonical economy and moving to
the higher-order economy. Thus, I assume that households keep their discount factor type
and remain in the same wealth quintile among households with the same discount factor.
Calculating the CEV separately for each discount factor group is useful as consumption
patterns and welfare costs substantially differ between those groups. The CEV for wealth
quintile Q of discount factor group β is then given by

W (Q, β) = exp{(1− β) (VHoM(Q, β)− VCan(Q, β))} − 1 (6.1)

where Vi(Q, β) is the average life-time value of households in wealth quintile Q of discount
factor group β, averaged across all simulation periods. Table 8 reports those CEV for the
patient and impatient households. Note, the wealth quintiles here refer to the wealth distri-
bution of impatient and patient households separately, not the overall wealth distribution.
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CEV Impatient Patient
Bottom 20% -1.7% 0.68%
20%-40% -1.1% 0.42%
40%-60% 1.3% 2.1%
60%-80% 1.9% 2.4%
80%-100% 1.4% 2.2%

Table 8: Average, ergodic CEV for impatient and patient households by wealth quintile of
the impatient and patient distribution, respectively.

Consistent with the previous analysis welfare costs of higher-order earnings risk decrease
in wealth. An impatient household in the bottom wealth quintile would accept a permanent
decrease in consumption of 1.7% in the canonical economy instead of moving to the higher-
order economy while remaining impatient and in the bottom wealth quintile of the impatient
households. In contrast, wealthy impatient households prefer the higher-order economy and
require an increase of 1.3%, 1.9%, and 1.4% in permanent consumption for the top three
wealth quintiles respectively in order to stay in the canonical economy. As shown in table
5 the earnings share held by the fourth wealth quintile increases significantly when allowing
for higher-order earnings dynamics which is the reason that those household benefit most
from the presence of higher-order earnings risk. The overall pattern is similar for patient
households though they prefer to live in the higher-order economy across all wealth quintiles.
Recall, that these are wealth quintiles of the patient wealth distribution. Since poor patient
households respond stronger to higher-order earnings risk and accumulate significantly more
wealth than impatient household they are better insured against the additional earnings risk.
Consistent with that, the share of patient households in the bottom quintile of the overall
wealth distribution falls from 12% in the canonical economy to 8% in the higher-order econ-
omy. Wealthy households prefer the higher-order economy as they behave as permanent
income consumers and permanent income increases slightly as discussed. Importantly, this
analysis abstracts from potential transition dynamics between economies with different earn-
ings dynamics and merely asks which ergodic world households prefer assuming they keep
their characteristics. It is therefore intuitive that primarily poor impatient households ex-
perience significant welfare costs of higher-order earnings risk because those households stay
poor in the higher-order economy.
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7 Evaluating the Solution Method

As discussed in 4, I make two contributions that make GPCE not only applicable to heterogeneous-
agent models in the first place but also efficient.
First, my approach allows for dependent random base variables and, thus, dependent indi-
vidual state variables. Second, I implement an outer iteration scheme that adjusts the base
random variable, and thereby generates a projection base that more closely mimics the real-
ized distributions in the simulation. In order to understand the corresponding gains I solve
the canonical model with three different methods: The here proposed full Dependent GPCE
method with both adjustments (full), the Dependent GPCE method without adjusting the
initially chosen steady state distribution as base distribution (noBDadj), and finally with
the standard GPCE method as used in Proehl (2017) which builds on the independence
assumption. In all cases, the order of truncating is three. While forecast errors reduce fur-
ther with an order of four the gains are relatively small and have no meaningful effect on
economic aggregates. I use the canonical economy for this evaluation as the performance of
the solution method in the two economies is essentially equivalent.

7.1 One-Period Ahead Forecast Errors

Figure 1 shows boxplots for the distributions of one-period ahead forecast errors for aggregate
capital in all three models. Forecast errors are computed as the percentage deviation of
forecasted from realized aggregate capital and generated by simulating the economies for
1000 periods (after burn-in).
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Figure 1: Boxplot for one-period ahead forecasting error distribution, different GPCE ap-
proaches
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The largest improvement for the accuracy of the law of motion measured at the one-
period horizon comes from allowing for the base random variable to be dependent. The
average forecast error falls by roughly 3 orders of magnitude, from −0.053 to 0.0002, when
moving from the standard to the full Dependent GPCE method. Moreover, the standard
GPCE method produces significant bias in its forecasts, systematically forecasting smaller
than realized capital stocks. The independence assumption of the standard GPCE method
is violated in this model due to correlation between wealth and income as well as wealth and
permanent discount factor type. Particularly the latter is strong and therefore responsible for
the large forecast errors generated by standard GPCE. The standard Krusell-Smith economy
as solved by Proehl (2017) does not exhibit any preference heterogeneity and idiosyncratic
income risk only exists in the form of unemployment risk. The unemployed make up a
small fraction of the total mass of households and are sufficiently wealthy to have similar
propensities to save out of cash at hand as the employed. As a result, the evolution of
the economy is almost entirely determined by the employed agents and there is no relevant
heterogeneity in individual states beyond wealth dispersion among the employed. However,
that is not the case in my model which results in large forecast errors with the standard
GPCE method.
To get a clearer picture of the gains from the second contribution figures 2 and 3 plot
the forecast error distributions for the Dependent GPCE method with and without base
distribution adjustment.

Figure 2: Full Dependent GPCE method
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Figure 3: Dependent GPCE method without base distribution adjustment

Adjusting the base distribution to be distributed as the realized ergodic distribution yields
two important improvements. First, average forecast errors in absolute terms fall roughly
by one order of magnitude. Second, adjusting the base random variable reduces the bias in
forecasts. Recall that the base random variable is the basis for the polynomials which in
turn determine for a given set of coefficients the sample cross-sectional distributions on the
aggregate grid based on which the approximate law of motion is derived. The significant and
consistent downward bias in forecasts every period without adjustment shows that the shape
of the steady state distribution differs in ways from the realized distributions in the dynamic
model that are relevant for the evolution of prices. This is confirmed when comparing specific
(β, y) base distributions from the two methods. Figure 4 plots those distributions for the
lowest and highest impatient earnings groups for the Dependent GPCE method with (full)
and without base distribution adjustment (noBDadj).
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Figure 4: Comparison of base distributions for impatient low earnings and impatient high
earnings group across methods

The yellow and blue graphs show the base distributions for impatient households in the
lowest earnings group for the Dependent GPCE method with and without base distribution
adjustment, respectively. In the dynamic model, income-poor households at the bottom of
the wealth distribution have a stronger precautionary savings motive than in the station-
ary economy due to the presence of aggregate risk and, therefore, accumulate more wealth.
Consequently, adjusting the base distribution based on the ergodic distribution significantly
reduces the mass of households at or close to the borrowing constraint, resulting in the shift
from blue to yellow. The same holds true for the base distributions of high earnings house-
holds. Moreover, the shape of the base distributions for low and high earnings households are
very different as expected when allowing for dependent base variables because earnings are
persistent and, thus, correlated with wealth. In contrast, with the standard GPCE method
that relies on the independence assumption the conditional base distributions for different
earnings groups are equivalent in their shape by construction.

7.2 Do Forecast Errors Accumulate?

As discussed by Den Haan (2010) one-period ahead forecast errors do not properly assess
whether forecast errors accumulate over time. The reason is that current aggregate state
variables based on which forecasts are being made are updated every period during the
simulation and are, thus, equal to to the true, realized aggregate state variables. In order
to evaluate the accuracy of the law of motion further, I therefore check the accumulation
of forecast errors. Following Den Haan (2010), one compares the realized aggregate capital
stocks from the full simulation to the series of aggregate capital stocks generated by purely
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iterating over the law of motion. I start with the same initial aggregate state, number of
burn-in and simulation periods as in the proper simulation and generate the out-of-sample
sequence of aggregate states in the following way

{{α0,i}ni=1 , {α1,i}ni=1 , {α2,i}ni=1 , {α3,i}ni=1, ...} =

{{α0,i}ni=1 , f({α0,i}ni=1) , f(f({α0,i}ni=1)) , f(f(f({α0,i}ni=1))), ...}

Figure 5 plots these out-of-sample forecast error distribution for the dependent GPCE
method.

Figure 5: Full Dependent GPCE Method

Compared to the one-period ahead forecast errors the mode of the distribution is shifted
to the right with larger errors on average. However, in absolute terms the out-of-sample
sample forecast errors are still small showing that the approximate law of motion is accurate
over time and forecast errors do not systematically accumulate to large errors. In particular,
the average out-of-sample forecast deviates from realized capital by roughly 0.07%. This
does not hold for the standard GPCE method. Table 9 documents the average absolute
one-period ahead and out-of-sample forecast errors for the Dependent and standard GPCE
methods, respectively.
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Error\Method Full Dependent GPCE Standard GPCE
1-period ahead 2 · 10−4 0.0529
out-of-sample 7 · 10−4 0.2080

Table 9: Average and maximum forecast errors when evaluating the law of motion out of
sample

While average forecast errors between out-of-sample and one-period ahead increase by
roughly the same factor the standard GPCE method starts at a significantly higher base
as it already produces very large average one-period ahead forecast errors. In particular,
forecasts miss realized capital on average by 5.29%. This results in an accumulated average
out-of-sample forecast error of 20.8% for the standard GPCE method. To put this into
perspective, the percentage standard deviation of the aggregate capital stock in this economy
is roughly 0.6%, meaning that the simulated out-of-sample economy moves to aggregate
capital stocks significantly and consistently below the interval of realized capital stocks in
the proper simulation when using the standard GPCE method. In contrast, the average
out-of-sample forecast error of 0.07% of the Dependent GPCE method is still very relative
to average variations of the capital stock.
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8 GPCE with Time-Varying Base Distributions

Many interesting economic settings are such that the cross-sectional household distribution
at times moves far away from the ergodic distribution. Models with financial intermediaries
often exhibit strong aggregate non-linearities between the crisis and regular region of the
aggregate state space. In that case, instead of using one general base distribution and
set of polynomials it is more efficient to choose different bases for different regions in the
aggregate state space. In order to assess the accuracy of the dependent GPCE method
when projecting on different bases, I solve a model with cyclical earnings risk and different
base distributions in recessions and expansions. Evaluating the method’s performance when
allowing for cyclicality in earnings risk is moreover useful because the objective of this project
going forward is to account for the empirically estimated cyclicality of earnings dynamics and
revisit the positive conclusions drawn in this paper so far as well as to extend the analysis
to normative questions.

The model is identical to the one presented in section 3 apart from the earnings process.
The specification of the earnings process changes in that the variance of the persistent
component now depends on the aggregate state zt as in Storesletten et al. (2004).

yt = exp (pt(zt) + ϵt) , ϵt ∼
iid

N (0, σ2
ϵ ) (8.1)

pt = ρpt−1 + ηt(zt), ηt ∼
iid

N (0, σ2
η(zt)) (8.2)

Table 10 depicts the calibration of the process which targets the estimates from Storeslet-
ten et al. (2004). I use their reported moments for the persistent and transitory components
and compute the implied moments of the overall earnings process. I then use GMM to
calibrate and discretize the persistent earnings processes in recessions and expansions while
ensuring a common earnings grid. The targets are the implied moments for earnings 6

Parameter Value Description
σ2
y(R) 0.6 Variance earnings shocks in Recession

σ2
y(E) 0.33 Variance earnings shocks in Expansion

σ2
ϵ 0.22 Variance transitory shocks

Table 10: Earnings process with cyclical variance, targets based on Storesletten et al. (2004)
6I use the same discretization method as for the higher-order process but without targeting higher-order

moments. See appendix B for more details.

34



8.1 Evaluating Cyclical Dependent GPCE

I evaluate the solution method again based on forecast errors for aggregate capital. For
comparability, I truncate the polynomial at order three as in the main model. Figure 6
shows one-period ahead forecast errors for capital.

Figure 6: One-period ahead forecasting error distribution with time-varying base distribution

One-period ahead forecast errors are roughly one order of magnitude larger than in the
non-cyclical economy in which the base distribution is constant. On average households
miss the realized capital stock with their forecasts by roughly 0.5%. While the forecast
errors increase relative to the canonical economy this is to be expected as capital is also sub-
stantially more volatile with a percentage standard deviation of 3.75%. The intuition is that
countercyclical earnings risk amplifies aggregate fluctuations by inducing a countercyclical
precautionary savings motive. While I am still working on improving the solution method,
this shows that it can be used when the base distribution varies over time.
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9 Conclusion

This paper has introduced higher-order earnings dynamics consistent with recent empiri-
cal findings into a workhorse heterogeneous-agent real business cycle model. Compared to
canonical earnings processes higher-order earnings risk induces larger earnings inequality,
particularly through more persistent and lower earnings at the bottom of the distribution.
Low-income households at the bottom of the wealth distribution respond by reducing con-
sumption as a share of total resources by roughly 13 percentage points and thereby increase
savings. In contrast, wealthier households are not strongly affected by changes in the higher-
order moments of earnings shocks as they behave as permanent income consumers. As a
result, wealth inequality falls while consumption inequality increases, reinforcing the known
issue of generating the degree of wealth dispersion observed in the data. Since effectively
only poor households adjust their consumption-savings pattern the aggregate time series
dynamics of the model does not change in the presence of higher-order earnings risk, leaving
the dynamics of aggregate capital, output and consumption mostly unchanged. However,
higher-order earnings risk does imply substantial welfare costs for wealth poor households
equivalent to up to 1.7% of permanent consumption. There are two reasons for that. First,
average consumption falls for the poor as the precautionary savings motive increases. Second,
for poor households resources to spend consist mostly of earnings. Therefore, the higher-
order moments of earnings are passed through to consumption dynamics, and particularly
excess kurtosis induces larger changes in consumption which lowers welfare.
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A Generating the Polynomials

Given a base random variable ν the corresponding polynomials are generated with the three-
term recurrence relation given by

Ψi+1(ν) = (ν − γi)Ψi(ν)− βiΨi−1(ν), i ≥ 1

where Ψ0(ν) = 0. The sequence is initialized with Ψ1(ν) = 1. As discussed the first
polynomial is always constant and equal to 1 which yields that the first coefficient αt,1 is
equal to the mean of the distribution. The parameters γi, βi ∈ R can be generated in different
ways as discussed in Zheng et al. (2015). Following Proehl (2017) I use the Stieltjes method
explained in detail in Gautschi (1982).

γi =
⟨Ψi, νΨi⟩
⟨Ψi,Ψi⟩

βi =
⟨Ψi,Ψi⟩

⟨Ψi−1,Ψi−1⟩

where ⟨:, :⟩ is the standard inner product in L2 with respect to the base distribution ν.

B Discretizing the Higher-Order Process

B.1 Targets and Calibrated Parameters

The earnings process is characterized as follows

yt = exp (pt + ϵt) , ϵt ∼
iid

N (0, σ2
ϵ )

pt = ρpt−1 + ηt, ηt ∼
iid

N (µ1, σ
2
1) with p1

N (µ2, σ
2
2) with 1− p1

I use GMM to solve for the calibration of the above process as well as the grid for the
persistent component pt to match a set of moments of the earnings process. Let p⃗ denote the
grid of persistent earnings then the set of parameters to choose is θ = (p1, µ1, µ2, σ1, σ2, σϵ, p⃗).
Given the standard deviation σϵ the transitory process is discretized with Tauchen 7. I first
use a global solver and afterwards improve on the initial solution with a more powerful

7I discretize the transitory component into 3 possible values and the persistent component into a 7 point
Markov chain. This generates a 21 point Markov chain for overall earnings
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local solver. The local solver targets the same set of moments but only chooses the grid for
persistent earnings θlocal = p⃗, not the calibration parameters for the process.
Let x denote log-earnings and ∆jx = xt − xt−j the j-year growth rate of log-earnings. Table
11 shows the set of targets as well as corresponding moments of the discretized earnings
process.

Targets Discretized process
Variance(x) 0.58 0.59

Variance(∆1x) 0.23 0.19

Skewness(∆1x) −1.35 −1.39

Kurtosis(∆1x) 17.8 15.72

Variance(∆5x) 0.46 0.51

Skewness(∆5x) −1.01 −1.25

Kurtosis(∆5x) 11.55 9.88

Table 11: Unconditional moments of log earnings for higher-order earnings process, targets
from Guvenen et al. (2015)

B.2 Moments of the Discretized Process

This section briefly derives the targeted moments of the discretized earnings process given a
set of parameters θ. Let F and f denote the cdf and pdf of the Gaussian mixture distribution
of the innovations of the persistent component, given a set of calibration parameters. Further,
let p⃗ denote the grid of persistent earnings and np, nϵ the grid sizes of persistent and transitory
components, respectively.
Based on p⃗ one generates another grid d⃗ across the real numbers with buckets for each
persistent earnings state given by

d⃗(i) =
p⃗(i− 1) + p⃗(i)

2
, i ≥ 2

where d⃗(1) = −∞ and d⃗(np) = ∞. Then the transition matrix Tp for persistent earnings
can be generated in the following way

Tp(r, c) = F(d⃗(c+ 1)− ρd⃗(r))−F(d⃗(c)− ρd⃗(r)).

Given the transition matrix for persistent earnings, it is straight forward to derive the cor-
responding invariant distribution of persistent earnings πp. The transitory component is
discretized with Tauchen’s method which yields the corresponding grid ϵ⃗, transition matrix
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Tϵ, and invariant distribution πϵ. The possible values and, thus, the grid for overall earnings
y⃗ follows from all possible combinations of persistent and transitory component according
to the specified process y(p, ϵ) = exp(p + ϵ). The transition probabilities for earnings Ty is
given by

Ty(y
′(p′, ϵ′)|y(p, ϵ)) = Tp(p

′|p) · Tϵ(ϵ
′|ϵ)

As with the persistent component the invariant distribution of earnings πy can be derived
by iterating over the transition matrix Ty until convergence. The grid y⃗, transition matrix
Ty and invariant distribution πy fully characterize the AR(1) process for earnings and are
sufficient to derive the resulting moments.
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